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ABSTRACT: Millions of people across the globe are affected by droughts every year, and recent 
droughts have highlighted the considerable agricultural impacts and economic costs of these 
events. Monitoring the state of droughts depends on integrating multiple indicators that each 
capture particular aspects of hydrologic impact and various types and phases of drought. As the 
capabilities of land surface models and remote sensing have improved, important physical pro-
cesses such as dynamic, interactive vegetation phenology, groundwater, and snowpack evolution 
now support a range of drought indicators that better reflect coupled water, energy, and carbon 
cycle processes. In this work, we discuss these advances, including newer classes of indicators 
that can be applied to improve the characterization of drought onset, severity, and duration. 
We utilize a new model-based drought reconstruction to illustrate the role of dynamic phenology 
and groundwater in drought assessment. Further, through case studies on flash droughts, snow 
droughts, and drought recovery, we illustrate the potential advantages of advanced model physics 
and observational capabilities, especially from remote sensing, in characterizing droughts.
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D rought events causing over one billion dollars in damage occur, on average, nearly 
every year in the contiguous United States (CONUS). Event-specific costs often reach 
annual levels of $4–7 billion (e.g., the 2014–15 western drought) and sometimes 

as high as $30 billion (e.g., calendar year 2012 losses from the drought in the central and 
western United States). The magnitude, breadth, and profound lasting effect of these events 
on social and economic systems necessitates attention from local, state, regional, and national 
entities that have responsibility for providing, maintaining, and planning water resources 
and supplying relevant information.

Monitoring the state of drought depends on integrating and discerning between myriad 
indicators of the water cycle (Keyantash and Dracup 2002). Dozens of indicators are in common 
use (e.g., Heim 2002; Svoboda and Fuchs 2017), and each indicator captures particular aspects 
of hydrologic variability and various types and phases of drought, such as meteorological, 
agricultural, and hydrological; however, no single indicator is comprehensive. These indica-
tors rely on a diverse array of data sources, including remote sensing, in situ measurements, 
and human observation, for directly measured quantities such as precipitation, temperature, 
soil moisture, and streamflow and indirectly estimated quantities such as vegetation bio-
mass and evapotranspiration. Drought indicators form the foundation for drought monitor-
ing (Svoboda 2000) and prediction (Sheffield et al. 2014; Dai 2013), and recent advances in 
understanding have underscored the need to consider more complex and realistic physical 
processes when developing these indicators. The goal of this paper is to discuss the technical 
state of drought monitoring and prediction; to evaluate legacy indicators as well as recent 
advances in monitoring products, in a case study context; and to discuss cross-cutting issues 
with indicator construction, performance, and choice.

This work represents an ongoing interest of NOAA’s Drought Task Force (DTF; Wood et al. 2015; 
Hoerling et al. 2014; Schubert et al. 2016), which has extensively discussed and evaluated 
the merits of drought indicators, especially in the context of compound drought events with 
strong temperature and precipitation contributions and under emergent conditions such as 
climate change and increased human management of the water cycle (Zhou et al. 2019a,b). 
These discussions build on years of DTF science supporting advances in the indicator suite 
and drought monitoring capabilities and products. The case study framing of this article was 
proposed by the first DTF (Wood et al. 2015), and has continued to serve as a framework for the 
second and third DTFs. Case studies provide an opportunity to benchmark the performance 
of capabilities in a real-world context, testing the ability of different methods and products to 
function properly in discerning the causes of and conditions in actual drought events, which 
are highly integrative of multiple forcing factors and stresses in the water cycle.

Scientific background
The term “drought” encompasses a variety of factors related to a dryness anomaly, impacting 
the soil, the biosphere, agricultural, and/or water resources. The key variable behind droughts 
is soil moisture. The state of soil moisture is determined by the temporal cumulative (im)
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balance between precipitation supply and losses as evapotranspiration and runoff. As such, 
low soil moisture conditions can result from a negative anomaly in water supply, i.e., precipi-
tation in the form of either snowfall or rainfall, by an anomaly in atmospheric demand due to 
radiation and increased temperature (Maes et al. 2019) or by a modification of the surface such 
as land cover or vegetation (Lemordant et al. 2018). This anomaly can be due to anomalous 
warming and/or atmospheric drying due to atmospheric dynamical patterns, such as synoptic 
blocking or intense subsidence in the midlatitudes, or to El Niño and its impact on tempera-
ture (Bretherton and Sobel 2003) and precipitation in the tropics (Sarachik and Cane 2010). 
Higher future atmospheric demand due to the combination of increased temperature and 
atmospheric dryness (Byrne and O’Gorman 2013, 2016; Lemordant and Gentine 2019) will 
increase atmospheric demand in the future (Grossiord et al. 2020; Ficklin and Novick 2017; 
Novick et al. 2016; Zhou et al. 2019b), thus potentially decreasing surface soil moisture 
conditions (Lemordant et al. 2018). In turn, low soil moisture conditions can further increase 
atmospheric demand as the increased sensible heat flux and lower evaporation rates favor 
increased vapor pressure deficit (the difference between saturated and actual vapor pressure) 
(Gentine et al. 2016; Zhou et al. 2019a), generating compound drought and heat wave events 
(Zhou et al. 2019b).

One challenge in assessing droughts is related to the fact that droughts take on multiple 
forms and have multiple impacts from reservoir and water resource management to vegeta-
tion health, and therefore, many metrics have been defined to assess their impact, with a 
particular application in mind. These indices may have various degrees of fidelity largely 
dependent on the data availability.

To understand what regulates drought, it is useful to use a simple water balance model 
and the Penman–Monteith equation (Penman 1948; Monteith 1965). A bulk water balance 
model (Gentine et al. 2012; Williams et al. 2020) can be written as

= – ,
r

ds
nz P ET –Q

dt

with n the soil porosity, zr the plant rooting depth or active evaporative depth, s the rela-
tive soil moisture, P precipitation, ET evapotranspiration, and Q runoff. Snow could also be 
accounted for and would mainly generate a lag due to the additional melting process. Clearly, 
the current water storage depends on the cumulative precipitation minus evapotranspiration 
(and runoff), i.e., on the history of supply and atmospheric demand.

To better understand the drivers of ET we use the Penman–Monteith equation, which 
provides the essential physical intuition on ET:
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with Rn net radiation, G ground heat flux, Lυ the latent heat of vaporization, VPD the vapor 
pressure deficit, ρa the density of the air, cp the heat capacity of the air, ∆ the slope of the 
Clausius–Clapeyron relationship, γ the psychrometric constant, ra the aerodynamic resistance 
related to the turbulent efficiency of the air, and rs the surface resistance to evapotranspiration, 
which increases with dryness in the soil and atmosphere (Kennedy et al. 2019; Lu et al. 2020; 
Medlyn et al. 2011). ET is therefore controlled by changes in the evaporative demand, i.e., 
available energy (Rn – G) and the atmospheric dryness (VPD), but ET is also regulated by water 
supply affecting rs. Therefore, a dryness metric should ideally encompass the concepts of water 
supply and demand as well as soil moisture regulation on surface resistance and therefore on 
ET. To meet these requirements, empirical indicators have been developed (Dai et al. 2004) 
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or land surface models resolving the surface energy and water balances have been used 
(Kennedy et al. 2019; Nie et al. 2019; Graf et al. 2006; Gan et al. 2019).

Indicators for monitoring and predicting droughts
Indicators of droughts have been developed to represent everything from precipitation deficits, 
evaporative demand increases, soil moisture deficits, and vegetative stress and decline to overall 
water balance deficits. When applied to drought monitoring, these indicators reflect different 
facets of drought, and provide the foundational inputs for national drought monitoring efforts 
such as the U.S. Drought Monitor (Svoboda et al. 2002) or international drought monitoring 
efforts such as the Famine Early Warning Systems Network (FEWS NET; Funk et al. 2019). In 
drought prediction, whether on subseasonal to seasonal time scales (Sheffield et al. 2014; 
Shukla et al. 2014) or climate time scales (Trenberth et al. 2014; Dai et al. 2004; Dai 2011), 
only a subset of indicators can be computed due to the physical limitations of and available 
outputs from models. The earliest, and most widely used indicators were developed to require 
a minimum number of readily available inputs from weather stations, such as precipitation and 
air temperature. In the last three decades, the advent of land surface models that run routinely 
for monitoring or forecasting has opened up many more possibilities for calculating drought 
indicators. Because the availability of data and/or model outputs determines which indicators 
are possible, we broadly classify indicators into traditional and land surface model based, with 
a third category—remotely sensed—to be discussed in a later section.

Traditional drought indicators. As noted in the Introduction, dozens of drought indicators 
are in common use (e.g., Heim 2002; Keyantash and Dracup 2002; Svoboda and Fuchs 2017). 
These references discuss the full range of indicators in detail, including their advantages and 
disadvantages. Therefore, we only briefly review the most commonly used indicators below. 
For convenience, we summarize the indicators discussed in this work in Table 1.

SPI. The standardized precipitation index (SPI) is based on water supply anomalies and 
requires only precipitation as input (McKee et al. 1993, 1995). SPI quantifies precipitation 

Table 1. Drought indicators discussed in this work along with their possible data sources.

Indicator name Data source

Standardized precipitation index (SPI) Ground, model, satellite

Standardized precipitation evapotranspiration index (SPEI) Ground, model, satellite

Palmer drought severity index (PDSI) Ground, model, satellite

Soil moisture percentiles Ground, model, satellite

Groundwater percentiles Ground, model

Standardized runoff index (SRI) Ground, model

1 April snow water equivalent (SWE) Ground, model

Severity–area–duration (SAD) analysis Model, satellite

Vegetation drought response index (VegDRI) Ground + satellite + model

Quick drought response index (QuickDRI) Ground + satellite + model

Evaporative demand drought index (EDDI) Ground, model

Evaporative stress index (ESI) Satellite

Solar-induced fluorescence (SIF) Satellite

Vegetation optical depth (VOD) Satellite

Normalized difference vegetation index (NDVI) Satellite

Enhanced vegetation index (EVI) Satellite

Terrestrial water storage percentiles Satellite + model
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anomalies as a standardized departure from a parameterized probability distribution func-
tion of historical precipitation, as shown in Fig. 1. As such, it does not take into account the 
concept of water demand. One key advantage is that it is straightforward to compute SPI 
as only precipitation data or forecasts are required. The historical precipitation used in the 
calculation of SPI is typically over a period of 1–24 months, with 12, 6, and 3 months being 
common. The number of months is often listed with the abbreviation, to denote the period 
being considered, e.g., 6-month SPI is denoted SPI6, and so forth.

SPEI. The standardized precipitation evapotranspiration index (SPEI; Vicente-Serrano et al. 2010) 
is a modified version of SPI, trying to address the fact that SPI does not account for changes 
in atmospheric demand (ET), especially due to temperature variability and extremes. SPEI 
requires precipitation, temperature, and optionally relative humidity and wind speed as 
inputs, making it useful for both monitoring and forecasts. SPEI is based on the temporal ag-
gregation of a water balance P − PET, with PET the potential evaporation instead of the actual 
ET. As such, SPEI will always overestimate the impact of atmospheric demand on droughts 
as PET > ET. Yet an advantage of SPEI is its simplicity, because it only requires P and T data 
when computing PET using the Thornthwaite equation (Thornthwaite 1948). When using the 
Penman–Monteith equation (Allen et al. 1998), additional weather data such as wind speed 
and relative humidity are required. This aggregated value is then normalized similarly to SPI 
to define the frequency based on a parameterized distribution (a three-parameter log-logistic 
distribution).

PDSI. The Palmer drought severity index (PDSI; Palmer 1965) is maybe the most popular 
drought index and is based on the concept of water supply and demand to estimate soil 
dryness, and because it requires only precipitation, temperature, and relative humidity as 
inputs, it is commonly used in both monitoring and forecasting. It is generally computed on 
a monthly time scale and is adjusted based on local historical conditions as anomalies. As 
such, PDSI is not only sensitive to water supply deficit, but also to variability in atmospheric 
demand such as higher vapor pressure deficit. Computing PDSI is more involved than SPI or 
SPEI, as it requires the computation of a water budget. Similar to SPEI, it has been shown that 
the computation of PDSI is sensitive to the calculation of PET (e.g., Milly and Dunne 2016).

Fig. 1. Probability distribution for the standardized precipitation index (SPI), showing percentiles and relationships to 
descriptions of moisture deficit and/or surplus conditions. (Figure from https://climatedataguide.ucar.edu/climate-data/standardized-
precipitation-index-spi.)
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Land surface model–based drought indicators. Land surface models are now used on a 
routine basis for drought monitoring (Mo 2008). For instance, the North American Land Data 
Assimilation System (NLDAS) (Xia et al. 2012; Mitchell et al. 2004) and Global Land Data As-
similation System (GLDAS) (Rodell et al. 2004) use land surface model (LSM) datasets forced 
by best-available observations and reanalyses to provide near real time (few days of lag) es-
timates of various hydrological variables such as total or top 1-m soil moisture, streamflow, 
evapotranspiration, or snow water equivalent (SWE). The calculation of water and energy 
budgets in land surface models suggests that approximate methods such as PDSI may in the 
future be superseded by land surface model–based water budgets, Further, because land 
surface models in systems such as NLDAS are run continuously on a regular grid, they are 
more amenable than point-based networks to drought characterization at regional scales. 
Percentiles (calculated relative to the long-term climatology of the LDAS, for each point and 
time of year) and anomalies of those variables can then be used to define the level of droughts. 
Yet these models include a myriad of parameters that ideally would be regionally tuned, lead-
ing to difficulties in their specification and uncertainties in their output. We discuss some 
commonly used land surface model–based drought indicators below.

Soil moisture percentiles. Land surface models provide spatially and temporally continuous 
soil moisture estimates at multiple depths that are especially useful for monitoring agricultural 
drought (Mo 2008; Mo et al. 2011). The NLDAS experimental drought monitor routinely pro-
vides soil moisture percentiles, which can be related to the U.S. Drought Monitor using similar 
definitions of drought occurrence and severity (e.g., 20th percentile as threshold for drought) 
as well as an optimal weighting scheme (Xia et al. 2014a,b). Model-based reconstructions of 
soil moisture have been applied to studies of flash drought (Mo and Lettenmaier 2015, 2016), 
historical drought trends (Mo and Lettenmaier 2018) and drought projections (Cook et al. 2015; 
Williams et al. 2020).

SRI. The standardized runoff index (SRI) is used to classify hydrological droughts 
(Shukla and Wood 2008) using model-based runoff. Similar to the SPI, the aggregation period 
may be 1 month or more.

1 April SWE. SWE is a key indicator of water availability in snowpack. Snowpack and 
related snowmelt are crucial for water resources in most Northern Hemisphere regions 
(Barnett et al. 2005); 1 April SWE is a standard indicator of water supply in the western United 
States, because on this date snowpack is typically at its maximum value; 1 April SWE has been 
used as an indicator of snow drought by several authors (Mao et al. 2015; Cooper et al. 2016; 
Dierauer et al. 2019).

SAD analysis. While not technically a different type of indicator, droughts can be character-
ized by three distinct indicators for severity, duration, and areal extent. By replacing storm 
depth with a measure of drought severity, severity–area–duration (SAD) curves can be con-
structed in an analog to precipitation depth–area–duration analysis. This approach has been 
used to evaluate twentieth century droughts in the United States (Andreadis et al. 2005), and 
is a useful way to summarize multiple dimensions of drought.

Satellite remote sensing capacities and indicators
Over the years, there have been tremendous advances in observational capacities of pre-
cipitation and drought conditions using satellite remote sensing. AghaKouchak et al. (2015) 
provide a review of remote sensing of drought, including current and emerging monitoring 
approaches. These capacities have added to our ability to diagnose and monitor conditions, 
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particularly in areas with limited in situ precipitation gauges and other direct measurements. 
Many of these retrievals also offer the opportunity to provide early warning of water stressed 
conditions. The observational capacities take advantage of signals in various wavelengths, 
including microwave, infrared, visible, and thermal, in addition to changes in the gravity field.

Precipitation. Retrievals from the Tropical Rainfall Measuring Mission (TRMM; 
Simpson et al. 1988; Kummerow et al. 2000), from the Global Precipitation Measurement 
(GPM; Hou et al. 2014) mission, and numerous other satellites have led to the develop-
ment of precipitation products such as TRMM Multisatellite Precipitation Analysis (TMPA; 
Huffman et al. 2007), Integrated Multisatellite Retrievals for GPM (IMERG; Huffman et al. 2015; 
Tan et al. 2019), Global Precipitation Climatology Project (GPCP; Huffman et al. 1997), Climate 
Hazards Group Infrared Precipitation with Station data (CHIRPS; Funk et al. 2015), Climate 
Prediction Center morphing technique (CMORPH; Joyce et al. 2004; Joyce and Xie 2011), and 
Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks 
(PERSIANN; Hsu et al. 1997). These products have led to improved understanding and cli-
matologies of historical precipitation as well as better real-time global/regional monitoring. 
For example, CHIRPS is routinely used by FEWS NET to calculate SPI over its period of record 
(Funk et al. 2019).

Soil moisture. Soil moisture measurements are crucial for diagnosing agricultural drought. 
The number of in situ measurement sites continues to expand, including mesonets, and 
networks such as the U.S. Department of Agriculture, Natural Resources Conversation 
Service’s (USDA/NCRS’s) snow telemetry sites (SNOTEL; Serreze et al. 1999) and Soil Climate 
Analysis Network (SCAN; Schaefer et al. 2007), and NOAA’s U.S. Climate Reference Network 
(USCRN; (Diamond et al. 2013). These and other networks have been standardized into 
products such as the (U.S.) National Soil Moisture Network (http://nationalsoilmoisture.com/; 
Quiring et al. 2016) and the International Soil Moisture Network (ISMN; Dorigo et al. 2011). 
However, these networks are still too limited to provide a spatially and temporally con-
sistent dataset. Microwave remote sensing has expanded soil moisture measurements to 
provide global coverage and consistent measurements for the first time. Missions such as 
the European Space Agency’s Soil Moisture Ocean Salinity (SMOS; Kerr et al. 2001) and 
NASA’s Soil Moisture Active Passive (SMAP; Entekhabi et al. 2010) have provided microwave-
based retrievals of surface soil moisture. The SMAP level 4 product (Reichle et al. 2019) 
combines the SMAP surface retrievals with an LSM through data assimilation to provide 
root zone soil moisture products. Satellite remote sensing-based soil moisture can be used 
for drought analysis, offering new views on the spatial and temporal behavior of droughts 
(e.g., (Nicolai-Shaw et al. 2017).

Vegetation indices. Visible imagery is widely used to monitor drought conditions from sat-
ellite. Visible and near-infrared wavelengths are used to monitor vegetation greenness, an 
indicator of vegetation productivity. Healthy vegetation reflects more near-infrared and green 
light and absorbs more red and blue light compared to other wavelengths. This has been used 
to generate indices measuring the difference between reflected near-infrared and absorbed 
red light, such as the normalized difference vegetation index (NDVI; Tucker 1979). Droughts 
impact vegetation health so that NDVI is directly connected to water stress. However, other 
biotic and abiotic factors also impact vegetation health and thus NDVI, leading to potentially 
confounding factors. Alternatives to NDVI include 1) normalized difference water index (NDWI; 
Gao 1996), which is an improvement over NDVI and tends to saturate less in high biomass 
environments, but is still sensitive to the soil background; and 2) enhanced vegetation index 
(EVI; Jiang et al. 2008), which is a modified version of NDVI aiming at correcting its lack of 
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sensitivity in high biomass regions and reducing the background signal pollution (soil and 
atmosphere); or 3) more objective versions of those empirical indices using machine learning 
such as the contiguous solar induced fluorescence (CSIF; Zhang et al. 2018b). These vegeta-
tion retrievals have been used as input to various drought indices, such as the vegetation 
drought response index (VegDRI; Brown et al. 2008). Vegetation retrievals are also used as 
input parameters to land surface models in LDASs.

Thermal evaporative stress. Thermal imagery is also adding value to drought monitoring 
and detection. Land surface temperatures (LST) retrieved from thermal remote sensing can 
be used to estimate evapotranspiration, including vegetation stress, as the latent heat flux is 
the most efficient cooling mechanism in warm conditions (Bateni and Entekhabi 2012). For 
instance, the evaporative stress index (ESI; Anderson et al. 2007, 2011) uses inputs of LST 
and leaf area index (LAI), and takes advantage of the high temporal resolution of measure-
ments from geostationary satellites. Evaporative stress has been shown to perform well in 
monitoring rapidly changing or “flash” droughts (Otkin et al. 2013), often earlier than other 
more traditional drought products and indices. The ESI performs well due to its high temporal 
resolution that is able to detect areas with rapid increases in drought stress, and can provide 
an early warning of a risk of drought intensification (Otkin et al. 2014).

Solar-induced fluorescence. In recent years, solar-induced fluorescence (SIF) has been shown 
to be detectable using existing satellite missions, starting with Greenhouse Gas Observing 
Satellite (GOSAT; Joiner et al. 2012; Köhler et al. 2015), Global Ozone Monitoring Experiment 
2 (GOME-2; Bacour et al. 2019; Joiner et al. 2013; He et al. 2017), Orbiting Carbon Observa-
tory 2 (OCO-2; Sun et al. 2017; Yu et al. 2019) and now with Tropospheric Monitoring Instru-
ment (TROPOMI; Doughty et al. 2019). SIF is a flux that is a direct proxy for photosynthesis 
(Li et al. 2018; Xiao et al. 2019), especially at relatively coarse spatial (few kilometers) and 
temporal scales (weeks) (Sun et al. 2017). Since SIF is a flux more directly connected to veg-
etation productivity, it provides a unique estimate of vegetation water stress (Sun et al. 2017; 
Pagán et al. 2019; Hamed Alemohammad et al. 2017). As such it has been used to assess the 
role of droughts or heat waves on ecosystem productivity (Helm et al. 2020; Wang et al. 2019; 
Sun et al. 2015; Zhang et al. 2018a), showing a potential even in cases where soil moisture 
would not necessarily be appropriate.

Vegetation optical depth. Vegetation optical depth (VOD) is another relatively recent remote 
sensing product related to vegetation productivity (Vaglio Laurin et al. 2020; Zhou et al. 2018; 
Li et al. 2013; Li et al. 2015; Liu et al. 2011; Rodríguez-Fernández et al. 2018; Piles et al. 2017; 
Wild et al. 2020) based on passive microwave remote sensing. VOD is related to above ground 
vegetation water content, itself proportional to dry biomass (the dominant factor) and plant tis-
sue relative water content (Konings and Momen 2018; Zhang et al. 2019). VOD directly connects 
to vegetation hydraulics and thus water stress (Konings and Gentine 2017; Novick et al. 2019; 
Konings et al. 2017; Giardina et al. 2018), offering a complementary information to that ob-
tained from soil moisture or SIF.

Terrestrial water storage. Gravity measurements can also be used to monitor water storage 
changes. The Gravity Recovery and Climate Experiment (GRACE) twin satellites are used 
to calculate monthly terrestrial water storage (TWS) anomalies, with negative anomalies 
representing total column-integrated water deficit (e.g., Rodell 2012; Thomas et al. 2014), 
over large spatial extents (hundreds of kilometers). GRACE TWS anomalies have also been 
assimilated into LSMs/LDASs for drought monitoring (Houborg et al. 2012; Kumar et al. 2016; 
Girotto et al. 2016; Li et al. 2019) as shown at http://nasagrace.unl.edu.
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Model-based reconstruction of CONUS droughts
Land surface models vary in terms of their complexity and representation of physical processes. 
For instance, recent land surface models have the option to choose between a dynamic or static 
climatological phenology, which can further modify the ET response through changes in both the 
surface roughness (and related aerodynamic resistance, see Penman–Monteith equation) and 
surface resistance, or can include a groundwater scheme (typically a water table) (Nie et al. 2019; 
Gan et al. 2019). As an illustrative example, the community Noah-MP LSM, a medium-complexity 
energy and water balance model, uses multiple options for key land–atmosphere interaction 
processes (Niu et al. 2011; Yang et al. 2011). Two of these physics options are particularly rel-
evant for drought applications: groundwater and dynamic phenology. There are several schemes 
available in Noah-MP for surface water infiltration and runoff, and groundwater transfer and 
storage, including water table depth to an unconfined aquifer (Niu et al. 2007). The Noah-MP 
model can be executed by prescribing both the horizontal and vertical density of vegetation 
using either ground- or satellite-based observations. Another available option is for prognostic 
vegetation growth that combines a Ball–Berry photosynthesis-based stomatal resistance with 
a dynamic phenology model (Dickinson et al. 1998) that allocates carbon to various parts of 
vegetation (leaf, stem, wood, and root) and soil carbon pools (fast and slow).

Forcing extension. To illustrate the physics impacts, the Noah-MP LSM was used to recon-
struct CONUS droughts for the period 1915–2018. Atmospheric forcing data consisted of 
daily precipitation P, wind speed, and daily maximum and minimum temperature (Tmax 
and Tmin). This forcing data at 1/16° spatial resolution for years 1915–2011 were taken 
from the Livneh et al. (2013) dataset and extended through 2018 using the same methods. A 
forcing evaluation was conducted, which showed that the extended forcing is consistent with 
the original dataset (figures not shown) in an overlap period (1961–2011). After the forcing 
data were extended, they were aggregated to 1/8° to be consistent with NLDAS. Additional 
required atmospheric forcing data (downward shortwave and longwave radiation, and vapor 
pressure) were then estimated following methods summarized by Bohn et al. (2013). The 
reader is referred to Su et al. (2021) for details.

Baseline CONUS drought reconstruction. Three different runs were performed using 
Noah-MP: 1) a baseline (BASE) run using the “standard” Noah-MP setup (Su et al. 2021), 2) a run 
(DYNAVEG) with the dynamic vegetation phenology option implemented (Dickinson et al. 1998), 
and 3) a run (GW) with a Noah-MP groundwater option (Niu et al. 2007). Using the BASE output 
of total column soil moisture (SM) (aggregated over all four Noah-MP layers), percentiles were 
calculated relative to that month’s and that grid cell’s 1916–2017 history. (Note: The first and 
last years of the reconstruction are removed due to a 5-day window for percentile calcula-
tions.) Drought events were defined as having SM percentiles below a threshold (20%) that is 
equivalent to the U.S. Drought Monitor (Svoboda et al. 2002) D1 threshold. Drought durations 
were also required to exceed five months. Events were selected in which the average drought 
area exceeded the 90th percentile for the 1916–2017 period (>38% of entire CONUS domain). 
There were 10 such events in BASE, which are listed in Table 2. Superscripts denote events 
that occurred only when physics options were varied relative to BASE. The 10 identified events 
are fewer than results in Mo and Lettenmaier (2018), who conducted a similar analysis, since 
our threshold (20%) was more stringent than theirs (30%). Figure 2 shows the average SM 
percentiles for 4 of the 10 events. As shown in Table 2, all 10 of the events covered at least 
38% of CONUS (averaged over their durations). The longest of the events (July 1954–May 
1955) lasted 11 months. The greatest area covered (52%) was for the May 1934–November 
1934 event, which was shorter (7 months) than most of the other events. The December 
1976–August 1977 event was among the top three severe droughts in terms of both duration 
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and spatial coverage. While the 2012 event was the most widespread of the past 40 years, its 
spatial coverage was less than that of the other events over the longer 100-yr period of record 
considered in this reconstruction. This helps underscore the value of extended reconstruction 
for examining extreme events such as droughts.

Table 2. The duration, coverage, and severity of the great drought events. These are a union of events classified based on 
BASE, DYNAVEG, and GW SM outputs, and with different drought indices (SPI, SPEI, PDSI). Events classified in all three con-
figurations are listed without superscripts; events classified using drought indices but not in BASE are listed with an asterisk 
(*); events classified both in DYNAVEG/GW and using drought indices but not in BASE are listed with two asterisks (**). All 
values given are from the BASE run.

Events Peak  
coverage date

Duration  
(month)

Average  
coverage (%)

Peak  
coverage

Minimum  
coverage

Average  
severity

Peak  
severity

Minimum  
severity

Peak  
severity date

December 1917–April 1918 January 1918 5 46 55 42 8.0 6.8 9.5 April 1918

April–September 1925** June 1925 6 41 48 35 8.5 8.0 8.9 September 1925

May–November 1931 July 1931 7 41 47 37 8.9 8.0 9.9 June 1931

May–November 1934 August 1934 7 52 60 42 7.7 6.4 8.7 June 1934

June–September 1936 July 1936 7 45 51 36 7.2 5.9 8.1 August 1936

October 1939–April 1940 January 1940 7 45 53 36 8.7 7.7 9.4 April 1940

October 1953–April 1954 November 1953 7 42 50 36 8.2 7.6 9.2 December 1953

July 1954–May 1955 August 1954 11 41 45 36 8.5 7.4 9.1 October 1954

September 1956–March 1957 December 1956 7 48 53 40 7.6 6.8 8.2 October 1956

November 1963–April 1964** November 1963 6 36 43 33 9.1 8.2 10.1 November 1963

December 1976–August 1977 February 1977 9 47 54 38 7.5 6.2 9.1 February 1977

September 1980–January 1981* January 1981 5 23 32 16 10.7 10.0 11.6 September 1980

November 1999–September 2000* February 2000 11 25 35 15 10.7 9.4 12.2 March 2000

July–December 2012 July 2012 6 38 42 34 9.5 8.9 10.1 August 2012

Fig. 2. SM percentiles in BASE averaged over the duration of four representative events: May–
November 1934, July 1954–May 1955, December 1976–August 1977, and July–December 2012.
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Comparison of soil moisture percentiles to other drought indicators. The events listed 
in Table 2 were also classified using the 20th percentile threshold of the 6-month standard-
ized precipitation index (SPI6), the 6-month standardized precipitation evapotranspiration 
index (SPEI6), and the PDSI. We 
used two methods to compute PET 
(required by SPEI and PDSI) to 
avoid complications with temper-
ature-based PET methods such as 
Thornthwaite (1948). As noted by 
Sheffield et al. (2012) evapotrans-
piration is a function of more than 
just temperature, and the correct 
physics includes radiative and aero-
dynamic controls on evaporative 
demand, as well as surface water 
stress regulation on supply. In this 
respect, the Penman–Monteith 
(PM) equation (Penman 1948; 
Monteith 1965) applied for a refer-
ence crop (typically short grass, 
denoted ET0) arguably is a better 
choice as a surrogate for PET. For 
this purpose, we implemented PM 
ET0 following Allen et al. (1998); 
however, we also report the previ-
ous results for the more common 
Thornthwaite method (which we 
denote TH). We note that ET0 does 
not include the soil moisture and 
vapor pressure deficit stressors 
on the surface resistance, which 
can be important especially un-
der droughts (Gentine et al. 2019; 
Massmann et al. 2019). We show 
results for SPEI and PDSI based on 
both TH and PM methods (denoted 
as SPEI_TH, SPEI_PM, PDSI_TH, 
PDSI_PM, respectively) in addition 
to SPI and SM percentiles in BASE, 
GW, and DYVEG.

Figure 3 shows the spatially 
averaged SM percentile of the 
Noah-MP variants (BASE, GW, and 
DYNAVEG) in the left panels, while 
the right panels show the different 
drought indicators from the BASE 
simulation, including the SM per-
centile again, in the right panels. 
The spatial extent for each event 
was determined where the pixels 

Fig. 3. Spatially averaged SM percentiles (over extent of drought 
estimated using BASE) for (left) other Noah-MP variants and (right) 
other drought indicators (expressed as percentiles) for the droughts 
of (a) 1934, (b) 1954, and (c) 2012. Bars at the top are actual (blue) 
and climatological (orange) monthly precipitation during the drought 
period, averaged over the drought extent.
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have the mean BASE percentiles lower than 20% in that event. Spatially averaged percentiles 
were examined for all the classified events, and here three representative cases (1934, 1954, 
2012) are shown. In the left panels, SM percentiles from the BASE run generally produce the 
lowest values during the most severe drought months, with GW and DYNAVEG somewhat 
higher. We believe this is related to negative feedbacks on soil moisture drying when GW and 
DYNAVEG are enabled. Also, DYNAVEG tends to have shorter drought durations. The right 
panels in Fig. 3 show somewhat different characteristics from those identified using SM. (All 
SPI, SPEI, and PDSI values are relative to the base period 1951–2010). For the 1934 and 1954 
droughts, we see a more or less concurrent drought troughs for different drought indices and 
SM percentiles (BASE, GW, and DYNAVEG); while for the 2012 event, the drought trough is 
more spread out. SPI6 and SPEI6 (both SPEI_TH and SPEI_PM) show more similar drought 
temporal signatures. SPI measures drought conditions only from a precipitation anomaly 
angle. SPI does not consider evapotranspiration, which may be the reason that SPI generally 
has the smallest spatially averaged severity (highest percentile) in all three droughts. By 
standardizing the difference between PET and precipitation, SPEI generally shows a higher 
severity than (or at least the same as) SPI. PDSI is based on the climatic water balance prin-
ciple, which also considers the available water holding capacity. Our results show that PDSI 
(both PDSI_TH and PDSI_PM) has the earliest drought onset, the latest drought termination 
and thus the longest duration for the 1934 and 1954 events. The construction of PDSI (self-
calibrated) produces strong lagged autocorrelations; as a result, the prior soil and climatic 
conditions have a long-term impact on this index, and this explains at least in part the lon-
ger PDSI-based drought durations compared with SPEI6 (Guttman 1998; Zhao et al. 2017). 
Furthermore, the long-term memory of previous climatic conditions also makes PDSI-based 
drought recovery slower, and hence later drought termination as compared with the other 
indices. These results highlight how accounting for separate atmospheric demand terms (such 
as temperature) in the different indices produce different estimates of the onset, peak, and 
duration of individual drought events.

The 2012 drought event depicted in Figs. 3e and 3f is further analyzed using a satellite 
remote sensing drought indicator. The thermal-based ESI is used to compare the onset and 
demise timing of the 2012 drought as compared to the model-based indices. One challenge 
in this comparison is that satellite data records are short compared to the 100+ year model 
simulation period from Noah-MP. We used the ESI, which is only available for the MODIS 
period (2000 and later). Following the methodology used in Anderson et al. (2011), we per-
formed temporal compositing of the daily ESI data from 2000 to 2018 to a monthly scale to 
reduce missing pixels due to the presence of clouds as well as reduce the effects of noise in 
the retrievals. Next, we calculated a pseudo z score to obtain the standardized anomalies 
over this period. Shown in Fig. 4 is the ESI z score over the same spatial extent of the 2012 
drought as used for the time series shown in Figs. 3e and 3f. The ESI anomaly is shown to go 
rapidly from near-neutral conditions in April 2020 to very low by June 2020. The low value 
indicates high levels of vegetation stress as retrieved from satellite. Given the different cli-
matologies and comparing a z score to percentiles, the onset and demise months from the 
curves in Figs. 3e and 3f are depicted as horizonal bars on Fig. 4. The ESI z score leads most 
of the model-based drought indices by one month, with the notable exception of the SPEI 
calculations, which also include anomalies in evaporation. This result shows the general con-
sistency of a satellite remote sensing-based drought index, while also showing the potential 
to capture rapidly emerging drought conditions based on stress with lead time as compared 
to some other indices.

Dry area coverage trend analysis. We examined trends in dry area coverage over the en-
tire CONUS for 1915–2018 (Table 3) using the different drought indices described above 
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(including alternate PM-
based PET for SPEI and PDSI) 
using the Mann–Kendall 
statistical test (Mann 1945; 
Kendall 1975) and the Theil–
Sen slope estimator. We per-
formed trend analyses not 
only for our entire period of 
record (1915–2018) but also 
for 1970–2018 (Table 4). 
We found that the CONUS 
dr y area f ract ions with 
all drought indices except 
SPEI6_TH show decreasing 
trends with Theil–Sen slopes 
in the range from about 
–0.03 to –0.06 (100 yr)–1 
(statistically significant at 
α = 0.05) becoming wetter 
over CONUS over the past 60 
years. Dai et al. (2004) found 
that PDSI_TH showed a dry-
ing trend over the period 
1900–1949 and a wetting 
trend over the period 1950–
2002 over CONUS. Dai (2013) 
shows a wetting trend over 
most of CONUS for 1950–2010 as well as 1923–2010 using PDSI_PM from observational forc-
ings. In general, century-long downtrends in drought (for most drought characteristics) are 
attributable to dry decades (especially 1930s, but also 1950s) early in the record. We find that 
for the more recent period beginning in 1970 (not studied by Andreadis and Lettenmaier) that 
the trend toward decreasing dryness, at least on a CONUS-wide basis, has disappeared. We note 
though that PDSI only uses an approximation for ET based on unstressed surface resistance. 
The feedback of soil moisture and increased vapor pressure deficit could alter those trends, 
but unfortunately, we do not have access to widespread and long-term measurements of ET, 
even with eddy-covariance towers, which have gaps, too short records, or are too sporadic.

Fig. 4. The z-score standardized anomalies of the evaporative stress index 
(ESI) over the extent of the 2012 drought from the Noah-MP BASE simula-
tion. The blue line (circles) depicts the ESI z score for each month from late 
2011 to mid 2013. The horizonal bars indicate onset and demise months 
from the model-based indices as shown in Figs. 3e–f (from bottom to top): 
BASE (black), GW (olive), DYNAVEG (light violet) and indicators (from top 
to bottom) PDSI-PM (pink), PDSI-TH (green), SPEI6-PM (orange), SPEI6-TH 
(gold), SPI6 (red).

Table 3. Trend analysis for CONUS dry area coverage (1915–2018).

BASE GW DYVEG SPI SPEI6_TH SPEI6_PM PDSI_TH PDSI_PM

Trend     —   

Slope (100 yr)−1 −0.06 −0.05 −0.05 −0.06 −0.02 −0.04 −0.04 −0.06

p 2.0 × 1011 3.4 × 109 3.6 × 109 1.7 × 109 0.13 1.9 × 104 4.6 × 1014 1.0 × 1014

Table 4. Trend analysis for CONUS dry area coverage (1970–2018).

BASE GW DYVEG SPI SPEI6_TH SPEI6_PM PDSI_TH PDSI_PM

Trend  –  —  —  

Slope (100 yr)−1 0.06 0.02 0.05 –0.02 0.15 0.05 0.08 0.03

p 0.02 0.27 0.02 0.56 1.7 × 107 0.10 1.1 × 108 0.02
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Impact of model physics. The BASE results were compared to the DYNAVEG and GW results 
using the same drought classification and analysis approach. For the GW run, the percentiles 
were calculated using the sum of moisture in the soil column and groundwater. Most of the 
drought events in GW and DYNAVEG also appear in BASE, except two (April–September 1925, 
November 1963–April 1964) listed in Table 2 with a superscript. Below, we discuss the impact 
of these physics changes in more detail.

Dynamic vegetation phenology. Compared with BASE, the spatial coverage of events listed 
in Table 2 for the DYNAVEG reconstruction tend to have smaller spatial coverage by 1%–6% 
of the CONUS. This suggests that the Noah-MP dynamic phenology scheme feeds back to 
reduce the drought area relative to the BASE. However, this may be due to an overestimate 
of stress that effectively shuts down transpiration before the soil moisture storage can be 
depleted. Similar to the BASE reconstruction discussed here, the majority of operational LSM 
drought products (such as NLDAS) use a monthly climatology of vegetation parameters, such 
as the fraction of green vegetation or the LAI. Thus, the LSMs in these systems have the same 
vegetation characteristics every year, which does not reflect the actual real-world conditions 
of vegetation senescence during drought and warm conditions (Zhou et al. 2019a). During a 
drought, an LSM specifying vegetation phenology in this manner will overestimate evapo-
transpiration, assuming the specified vegetation greenness and leaf area are higher than that 
during drought stress. New physics options in more advanced LSMs account for these types 
of processes through dynamic phenology schemes, which grow and shrink leaf biomass. In 
addition to Noah-MP, other LSMs with this option include the Community Land Model (CLM; 
Lawrence et al. 2019), Interaction Soil–Biosphere–Atmosphere (ISBA-A-gs; Calvet et al. 2004; 
Sabater et al. 2008; Barbu et al. 2011), and the Joint U.K. Land Environment Simulator (JULES; 
Best et al. 2011; Clark et al. 2011). An LSM with a dynamic phenology scheme will also allow 
for data assimilation of remotely sensed vegetation, to include observations of vegetation 
health in the LSM to account for vegetation stress during a drought. Because the response of 
the vegetation to stress is not well constrained in these models, Mocko et al. (2021) assimi-
lated satellite-based LAI into the dynamic phenology scheme of Noah-MP, and showed that 
assimilation improved the rank correlation of drought categories diagnosed from the LSM 
improved as compared to the USDM drought categories over the 2000–17 period (Fig. 5). These 
improvements were most notable in agricultural regions. Other physics improvements, such 
as a dynamic root system and plant water storage, have been made to the dynamic phenology 
schemes and have shown benefits in drought applications (e.g., Niu et al. 2020).

Groundwater. While it is not evident for the three droughts shown in Fig. 3, Su et al. (2021) 
perform a more detailed analysis of the most severe droughts of the record and find some evi-
dence that the model with GW predicts slower recovery than without. This is consistent with 
the literature suggesting that groundwater anomalies typically lag and integrate precipitation 
anomalies, and recovery also tends to be lagged behind surface and soil moisture drought 
recovery (e.g., Wang et al. 2016; Uddameri et al. 2019; Ojha et al. 2020; Hellwig et al. 2021). 
Groundwater deficits can also contribute to more rapid drought reemergence following 
short-lived drought recovery, as the memory of the deeper storages can affect agricultural 
drought, if there is a small deficit of precipitation after the recovery. Well level/height mea-
surements have historically been used for drought monitoring, but GRACE retrievals now 
support detecting changes and anomalies of groundwater (Houborg et al. 2012). LSMs have 
also added advanced physics including groundwater (Niu et al. 2011; Lawrence et al. 2019). 
The GW reconstruction shown in Table 2 and Fig. 3 demonstrates the impact of physics on 
the most severe historical U.S. droughts. Another example of including groundwater anoma-
lies in drought monitoring is depicted in Fig. 6. The top row shows USDM, and Noah-MP top 
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Fig. 5. From Mocko et al. (2021). Difference in Spearman’s rank correlation to USDM between the 
Noah-MP simulation with data assimilation of LAI minus the simulation with no data assimilation. 
Warm (red) colors indicate locations where the correlation of simulated top 1-m soil moisture 
drought categories to the USDM improved due to data assimilation of the LAI; cool (blue) colors 
indicate where LAI data assimilation degraded the correlation.

Fig. 6. Drought categories from (left) the USDM and from (center) Noah-MP simulations of top 1-m soil moisture and (right) 
groundwater. (top) States on 3 Jan 2017 and (bottom) states three weeks later, on 24 Jan 2017.
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1-m soil moisture and groundwater storage drought severity categories for 3 January 2017 
in the state of California. The USDM for this week shows exceptional drought over much of 
Southern California, with other drought categories over most of the state. This week was in 
the middle of a winter where California was starting to recover from a multiyear drought, and 
several atmospheric rivers had already provided significant winter precipitation. However, 
water storages in reservoirs and in wells (aka, groundwater) had not yet fully recovered. The 
Noah-MP top 1-m soil moisture percentiles show neutral to slightly wet conditions over the 
state, while the simulated Noah-MP groundwater percentiles show exceptional drought still 
in place over much of the southern half of California. The bottom row shows the same three 
panels (USDM, Noah-MP top 1-m soil moisture, and Noah-MP groundwater), but for three 
weeks later, on 24 January 2017. There were more atmospheric river events during these three 
weeks, resulting in a reduction of drought severity in the USDM. The top 1-m soil moisture is 
simulated to be very wet; yet the groundwater percentiles still show very dry conditions. SMAP 
surface soil moisture observations for this week also showed very wet surface soil moisture 
during this week, as did the operational NLDAS phase-2 LSMs (not shown). None of the 
operational NLDAS-2 LSMs currently include a representation of groundwater physics. The 
USDM author, in the National Drought Summary for 24 January 2017 (https://droughtmonitor 
.unl.edu/services/data/summary/html/usdm_summary_20170124.html), cited continuing obser-
vations of dry well measurements as justification for the continuation of severe drought 
conditions over Southern California for this week. The slower recovery of the groundwater 
storage in the Noah-MP LSM despite very wet top 1-m soils demonstrates the important 
role of groundwater in assessing drought recovery. This has been recognized in the USDM 
community, who have incorporated GRACE-based drought monitoring indicators into their 
weekly products (Houborg et al. 2012).

It should be kept in mind that adding model physics inherently increases the model com-
plexity, adding parameters that can sometime not be directly observable. For instance, for 
groundwater, direct observations of the groundwater table might not be directly available at 
the particular site of interest. Dynamic phenology module requires specification of a tempera-
ture, light, and water dependence function, which might not be perfect, causing uncertain-
ties in the water cycle (Zhang et al. 2019). Finally, one should not overlook the essential role 
of humans on land management (Wheater and Evans 2009) or on groundwater abstraction 
(Döll et al. 2014). Those effects are essentially absent from current land surface models but 
are likely essential.

Case studies
Flash drought. In the USDM era (from 2000 to present), there have been several drought 
events that were notable for their rapid onset. These types of events have been termed “flash 
droughts,” and exhibited a rapid rate of intensification. Otkin et al. (2018) proposed a defini-
tion for flash drought, and noted that they tend to occur more often in the summer due to an 
increase in the evaporative demand. The satellite era, which has enabled many of the obser-
vational capacities detailed in a previous section, has provided several new drought indices 
that can detect these rapidly emerging droughts through remote sensing.

ESI uses remotely sensed thermal-based evaporation to estimate the vegetation stress. The 
vegetation (or evaporative) stress, along with newer indicators like the evaporative demand 
drought index (EDDI; Hobbins et al. 2016) has been shown to represent rapidly emerging 
drought conditions, often before other drought indices or products reflect these stressed condi-
tions (McEvoy et al. 2016; Otkin et al. 2018). The 2012 flash drought in the central United States 
is a particular example of this type of drought, with high temperature anomalies leading to 
strong drought intensification (Otkin et al. 2016; Basara et al. 2019). The ESI is also one of the 
inputs to the quick drought response index (QuickDRI), which is led by the National Drought 
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Mitigation Center at the University of Nebraska–Lincoln (Wardlow et al. 2017). QuickDRI is a 
shorter-term indication of dryness and is designed specifically to detect rapid-onset drought 
conditions.

Snow drought. Low snowpack record years are critical to droughts in snow-affected areas, 
such as in the west CONUS (Mao et al. 2015; Cooper et al. 2016; Dierauer et al. 2019). 
With growing awareness of and concerns about the impacts of climate change, there 
has been increased attention to snow droughts (Harpold et al. 2017). The 2013–16 
California drought and its links to low snow accumulations has been of particular inter-
est (Hatchett and McEvoy 2018). Here, the 2013–16 California snow drought is analyzed 
using model simulations. The study domain is the Sierra Nevada of California, defined 
according to Mao et al. (2015) where long-term average 1 April SWE exceeded 10 mm over 
the reconstructed history. This area was chosen because it is the source of water for much 
of California, and hence low snowpacks in this area lead to drought conditions for much 
of the rest of the state.

Empirical cumulative distribution functions (ECDFs) were computed for 1 April SWE (from 
Noah-MP BASE output), winter (November–March) accumulated precipitation P, and winter 
(November–March) average surface air temperature to assess the severity of the drought 
during drought years 2013–16 and other dry years. The 1 April SWE is a standard indicator 
of water supply in the western United States, and is correlated to the winter accumulated 
precipitation and surface air temperature. The ECDFs are analyzed to see how well correlated 
extreme drought years are between these three variables as drought indicators. As shown in 
Fig. 7, the years 2015, 1976, and 1977 are the most severe snow droughts based on 1 April 
SWE, whereas only 1976 and 1977 are the most severe droughts based on winter (November–
March) precipitation. Based on winter average temperature, 2015 was among the years with a 
warmest winter. The six years with the lowest 1 April SWE are identified with different colors 
in Fig. 7. It should be noted that the second and third most severe snow droughts classified in 
our study are 1976 and 1977, while they are 1977 and 1976 (respectively) in Mao et al. (2015). 
The differences might result from the different atmospheric forcing data and models used in 
Mao et al. (2015) and in this study.

Analysis was also performed using 2- and 3-yr average drought conditions (see Figs. 8 and 9). 
For 2-yr events, combined water year 2014–2015 ranked the second most severe in terms of all 
three measures of SWE, winter P, and winter T. Combined water years 1976–77 form the driest 
2-yr event in the record of SWE and winter P. For 3-yr events, combined water years 2013–15 
are not exceptional in winter P and rank the fourth in winter T; however, this results in the 
most severe 1 April SWE. The results of 2- and 3-yr events are supported by Mao et al. (2015).

Compound droughts and heat waves. Droughts and heat waves rarely occur in isolation, rath-
er they should be thought of as compound extreme events (Zscheischler and Seneviratne 2017; 
Zhou et al. 2019a,b) in which heat waves and soil moisture and droughts are strongly interact-
ing. Indeed, initial soil moisture deficit reduces evapotranspiration and increases sensible heat 
flux, thus warming and drying the atmospheric boundary layer (Zhou et al. 2019a), leading 
to the onset or maintenance of a heat wave. Similarly, an initial heat wave rapidly depletes 
soil moisture, leading (if sustained) to a soil moisture drought.

Discussion and conclusions
Advances in observations and models, coupled with new understanding about physical 
mechanisms and feedbacks controlling the development, duration, and recovery from 
drought have led to substantial growth in potential drought indicators. Many of these 
“newer” indicators (e.g., NLDAS soil moisture percentiles, ESI, GRACE-based groundwater 
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percentiles) are being routinely considered as part of the USDM (Svoboda et al. 2002), but it 
is not clear which indicators receive the most weight nor how these weights have changed 
over time to reflect the unique information provided by the various indicators. Currently 
funded work by NIDIS is attempting to quantify these changes by estimating these weights 
via machine learning.

The drought reconstruction presented here shows that the choices of indicators and land 
surface model physics strongly affect the estimates of drought onset, intensity, and duration. 
For example, when using dynamic vegetation, these droughts tend to have smaller spatial 
coverage and average severity. Although not shown here, the more comprehensive analysis 
of Su et al. (2021) suggests that groundwater parameterizations can lead to longer temporal 
durations, which might be especially important for predicting recovery. Further, standard 

Fig. 7. (a) ECDFs of aggregate winter precipitation (khaki dot line), simulated aggregate 1 Apr 
SWE (black stars line), and averaged winter surface air temperature (sky-blue triangle line) for 
water year 1915–2018. The six years with the lowest SWE values are labeled. The Apr SWE per-
centile relative to 1916–2018 for SWE drought years (b) 1976 and (c) 2015.
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indicators should be augmented with newer indicators such as EDDI and remotely sensed 
indicators such as ESI or QuickDRI for flash droughts, and alternative indicators such as 
1 April SWE for snow-dominated areas.

Beyond model physics and drought indicators, emerging understanding of the role of 
multiple driving factors in influencing drought development and duration is leading to the 
notion of compound hazards, such as droughts and heat waves (Zscheischler et al. 2018; 

Fig. 8. As in Fig. 7a, but as an average for 2-yr events.

Fig. 9. As in Fig. 7a, but as an average for 3-yr events.
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Sadegh et al. 2018; Zhou et al. 2019a). This understanding suggests that drought management 
requires multifaceted information about impacts across ecosystems, water resources, and dif-
ferent economic sectors. Efforts such as the USDM Drought Impacts Reporter (Smith et al. 2014) 
helps reduce vulnerability to drought by enabling planners to better target actions. Advances 
in drought monitoring and prediction, including a better understanding of processes and 
indicators, are supporting drought management for the twenty-first century.
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